Generating efficient derivative code with TAF: Adjoint and tangent linear Euler flow around an airfoil

نویسندگان

  • Ralf Giering
  • Thomas Kaminski
  • Thomas Slawig
چکیده

FastOpt’s new automatic differentiation tool TAF is applied to the two-dimensional Navier-Stokes solver NSC2KE. For a configuration that simulates the Euler flow around a NACA airfoil, TAF has generated the tangent linear and adjoint models as well as the second derivative (Hessian) code. Owing to TAF’s capability of generating efficient adjoints of iterative solvers, the derivative code has a high performance: Running both the solver and its adjoint requires 3.4 times as long as running the solver only. Further examples of highly efficient tangent linear, adjoint, and Hessian codes for large and complex three-dimensional Fortran 77-90 climate models are listed. These examples suggest that the performance of the NSC2KE adjoint may well be generalised to more complex three-dimensional CFD codes. We also sketch how TAF can improve the adjoint’s performance by exploiting selfadjointness, which is a common feature of CFD codes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling Tangent-Linear and Adjoint Models

We consider the solution of a (generalized) eigenvalue problem arising in physical oceanography that involves the evaluation of both the tangent-linear and adjoint versions of the underlying numerical model. Two different approaches are discussed. First, tangent-linear and adjoint models are generated by the software tool TAF and used separately. Second, the two models are combined into a singl...

متن کامل

Generating Recomputations in Reverse Mode Ad

The main challenge of the reverse (or adjoint) mode of automatic diierentiation (AD) is providing the accurate values of required variables to the derivative code. We discuss diierent strategies to tackle this challenge. The ability to generate eecient adjoint code is crucial for handling large scale applications. For challenging applications, eecient ad-joint code must provide at least a fract...

متن کامل

Simulation of Pitching and Heaving Airfoil with Oscillation of Flow Boundary Condition

A pressure based implicit procedure to solve the Euler and Navier-Stokes equation is developed to predict transonic viscous and inviscid flows around the pitching and heaving airfoils with a high reslution scheme. In this process, nonorthogonal and non moving mesh with collocated finite volume formulation are used. In order to simulate pitching or heaving airfoil, oscillation of flow boundary c...

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

Numerical Investigation of Adjoint Method in Aerodynamic Optimization

In this research, the continuous adjoint method is applied to optimize an airfoil in subsonic and transonic flows. An Euler flow solver is used to analyze the inviscid compressible flow over airfoils in each design cycle. Two design problems appearing in aerodynamic shape optimization, namely inverse pressure design and drag minimization were investigated. In the first part, a test case was car...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Future Generation Comp. Syst.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2005